website templates free download

Security Screening

Security screening is likely to be a very large market for millimetre wave technology. This is because over the last few decades the demand for individuals to be screened for illegal or forbidden items has risen dramatically. The demand shows no sign of abating.

The capability for screening individuals for items concealed under clothing is enabled by the almost complete transparency of clothing to millimetre waves. It will be the security screening technology of the future, being fully automated and capable of detecting a very wide range of both metal and non-metallic threat objects.

Systems research over the last decade indicates deployment scenarios for this technology fall naturally into two categories, full-body scanning and stand-off screening:

1) Full-body  (or surround imaging) portal scanners need to closely scrutinise all surfaces of the human body with millimetre scale resolution. At airport departure lounge entrances, the market requirement is to do this for threats such as (sheet) explosives and contraband within about one second, in a walk-through system, with a high probability of detection and low false alarm rate. At entrances to other areas (transport networks, shopping centres, arenas, schools, corporate headquarters, office complexes, government buildings and churches) the requirements will be similar, to detect a diversity of weapons and threats, but with slightly lower specifications than that of the airport.

2) Stand-off screening scanners provide an initial first layer of screening of individuals for larger threats (knives, guns, bombs, improvised explosive devices), at ranges out to tens of metres. Typical scenarios here are approaches to checkpoints and in public places where people congregate.

Cooperative and non-cooperative are two further categories of screening. The former is overt, where the subject is aware of being screened and may have to divest items in pockets, remove shoes or remain stationary for a few moments while being scanned. The latter is covert, where the subject is unaware of the screening process, respective the legalities of the particular deployment scenario.

Knife and gun crime is an area now being addressed for non-cooperative screening of people in public places. Evolving millimetre wave sensors are becoming more effective at recognising these types of weapons concealed on persons. Security services are immediately alerted about the positive results of non-invasive pat-down searches.

Rucksack bomb detection is also enabled by the transparency of fabric to millimetre waves. Should a device be wrapped in an opaque material, the sensor will detect this as an anomaly.

Recognising threats on the body, particularly in areas difficult to screen using existing technology, is key to the newest methods of screening. The methods need to be unobtrusive and protect personal privacy. Machines running algorithms to process sensor data recognise threats; human operators cannot assimilate the throughput data fast enough, so imagery is not viewed by operators; only cues are sent to security, so a potential suspect can be engaged. In future these systems will be omnipresent, fully automated and screen adults and children alike, and all groups of people without discrimination. The technology will be accepted as a necessary part of society and blend seamlessly into building infrastructure and street furniture of future towns and cities.

Receiver Operating Characteristics (ROC) of detection-probability and false-alarm-rate are the performance metrics of security screening sensors. A good sensor has a high detection-probability and a low false-alarm-rate, meaning it can detect many threats without generating false alarms. Specific ROC characteristics have been set for the different screening scenarios based on the estimated costs of the risks. For a given sensor, the detection-probability threshold may be raised at times of heightened threat levels, so more potential threats can be identified. However, this raises the false alarm rate, which slows the personnel throughput rate.  For this reason End Users, equipment manufacturers and governments are demanding the highest detection-probabilities and the lowest false-alarm-rates for emerging personnel security screening sensors.   

Clothing penetration of millimetre waves varies considerably over the band and this dictates the screening capabilities. Greater penetration at lower frequencies enables screening through thicker clothing and greater numbers of layers, whilst at the high frequencies screening is guaranteed only through thinner clothing.  Thicker materials, such as (shoe) leather and rubber, and materials which contain moisture, can be penetrated at the lower frequencies.

Penetration into human skin of millimetre waves is only a fraction of a millimetre, with 10% to 40% of this radiation being reflected from the body, the precise percentage being dependent on the thickness and moisture content of the skin. This varyies with gender ethnicity, body location and age. The skin-model for humans is a key element of machine anomaly detection algorithms.

Combatting human trafficking by screening fibre glass and canvas sided vehicles for stowaways at road and ferry port (border) checkpoints is a current application of MMW sensors, enabled by the opaque signature of the human body.

Health & Safety: Our environment continually bathes us in millimetre wave radiation whereever we are, as a natural phenomenon; it is non-ionoising and extremely low in intensity, therefore completely non-dangerous to life. Active systems like radar deliver lower doses of this harmless radiation than that from a mobile phone.